Four Novel Eremophilanolides from Ligularia sagitta

by Lyi Li, Li-Wen Xu, and Han-Qing Wang*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China

Four new eremophilanolides, isolated from *Ligularia sagitta*, were identified as $(1\beta,3\beta,6\beta,8\beta,10\beta)$ -6-acetoxy-3-(angeloyloxy)-1,10-epoxy-8-hydroxyeremophil-7(11)-en-8,12 α -olide (1), $(1\beta,3\beta,6\beta,8\beta,10\beta)$ -3-(angeloyloxy)-1,10-epoxy-6,8-dihydroxyeremophil-7(11)-en-8,12 α -olide (2), $(1\beta,3\beta,6\beta,8\beta,10\beta)$ -3-(angeloyloxy)-1,10-epoxy-8-ethoxy-6-hydroxyeremophil-7(11)-en-8,12 α -olide (3), and $(1\beta,3\beta,8\beta,10\beta)$ -3-(angeloyloxy)-1,10-epoxy-8-hydroxyeremophil-7(11)-en-8,12 α -olide (4). Their structures were elucidated by spectroscopic methods, including 2D-NMR techniques and chemical transformations.

Introduction. – More than 20 *Ligularia* species are being used in Chinese folk medicines. Their roots, stems, leaves, and flowers are effective anti-inflammation agents, reduce phlegm, relieve cough and pain, and help blood circulation. As mirrored in Chinese pharmacopoeia, these plants have been used for a long time to cure pulmonary tuberculosis, haemoptysis, urinary-tract blockages, rheumatism, common cold, pharyngitis and laryngitis, hepatitia, bronchitis, and asthma [1]. *Ligularia sagitta* (MAXIM.) MATTF. is widely distributed in Northwestern China and has been used as a folk medicine to reduce phlegm, relieve cough, cure pulmonary tuberculosis, urinary-tract blockages, common cold, and pharyngitis [2]. Eremophilane sesquiterpenes and pyrrolizidine alkaloids are the most widespread secondary metabolites of this genus and other plants [3–7]. We have investigated the constituents of *L. sagitta* and found the new eremophilanolides 1–4, whose isolation and structure elucidation will be reportet in this paper.

Results and Discussion. – The IR band of compound **1** at 1754 cm⁻¹ indicated an unsaturated γ -lactone moiety. The NMR spectral data (*Table 1*) and the EI mass spectrum were consistent with an eremophilenolide of the molecular formula $C_{22}H_{28}O_8$. A total of 22 resonances, corresponding to six Me, two CH₂, and five CH groups, as well as nine quaternary C-atoms, were observed in the ¹³C-NMR spectrum of **1**. In the ¹H-NMR spectrum, the three eremophilenolide Me signals were observed at δ_H 1.02 (*d*,

J=6.8 Hz), 1.14 (s), and 1.81 (s). Moreover, a pair of doublets (J=13.6 Hz) at $\delta_{\rm H}$ 2.38 and 1.83, unambiguously assigned to CH₂(9), indicated that C(8) and C(10) were quarternary, and a doublet at $\delta_{\rm H}$ 3.21 disclosed the presence of a 1,10-epoxy group, as in the cases of structurally similar compounds reported previously [8][9]. The characteristic signals at $\delta_{\rm H}$ 1.96 (dq, 3 H), 1.86 (s, 3 H), and 6.07 (qq, 1 H) showed the presence of an angeloyloxy (=(2-methylbut-2-enoyl)oxy) group, and a singlet (3 H) at $\delta_{\rm H}$ 2.23 was assigned to an AcO group. The signal at $\delta_{\rm H}$ 5.11 (ddd, J=3.6, 3.6, 7.2 Hz), arising from H_a-C(3), and the downfield shift of the H_a-C(6) signal at $\delta_{\rm H}$ 6.04 (s) revealed that the the angeloyloxy and AcO groups were in 3 β and 6 β position respectively, in accord with the corresponding HMBC spectrum ($Table\ I$). Taking all these data into account, compound 1 was identified as (1 β ,3 β ,6 β ,8 β ,10 β)-6-acetoxy-3-(angeloyloxy)-1,10-epoxy-8-hydroxyeremophil-7(11)-en-8,12 α -olide¹).

Table 1. ^{1}H - and ^{13}C -NMR Spectral Data of Compound 1. Spectra recorded in CDCl₃ at 400 (^{1}H) and 100 MHz (^{13}C); δ in ppm, J in Hz.

	$\delta_{ m H}$	$\delta_{ m C}^{-a})$	HMBC ^b)
H-C(1)	3.21 (d, J = 9.6)	60.4 (d)	CH ₂ (2), CH ₂ (9)
$CH_2(2)$	2.10, 2.27 (2m)	42.4(t)	H-C(1), H-C(4)
H-C(3)	5.11 (<i>ddd</i>)	67.5(d)	$H-C(1)$, $CH_2(2)$, $H-C(4)$, $Me(15)$
H-C(4)	2.11 (m)	33.7(d)	$CH_2(2)$, $H-C(3)$, $H-C(14)$, $Me(15)$
C(5)	_ ` ´	44.4 (s)	H-C(4), H-C(6), Me(14), Me(15)
H-C(6)	6.04(s)	72.3 (d)	Me(14)
C(7)	_ ` `	154.8 (s)	H-C(6), Me(13)
C(8)	_	101.2(s)	$CH_2(9), Me(13)$
$CH_{2}(9)$	2.38, 1.83 (2d, J = 13.6 each)	24.9 (t)	H-C(1)
C(10)		60.8(s)	H-C(1), $H-C(4)$, $Me(14)$
C(11)	_	124.5 (s)	H-C(6), Me(13)
C(12)	_	$171.1 \ (s)$	Me(13)
Me(13)	1.81 (s)	7.9(q)	_ ` ` `
Me(14)	1.14(s)	15.2 (q)	H-C(4), H-C(6), Me(15)
Me(15)	1.02 (d, J = 6.8)	9.4(q)	$CH_2(2), H-C(3), Me(14)$
MeC = O	_	170.9(s)	MeC=O, H-C(6)
MeC=O	2.23(s)	20.6(q)	_
C(1')	_	167.1(s)	H-C(3), H-C(3'), H-C(5')
C(2')	_	127.7(s)	H-C(4'), H-C(5')
H-C(3')	6.08 (qq, J = 6.8, 1.6)	138.4 (d)	H-C(4'), H-C(5')
Me(4')	1.86 (dq, J = 6.8, 1.6)	20.5(q)	H-C(3'), H-C(4')
Me(5')	1.97 $(dq, J = 1.6, 1.6)$	15.8 (q)	H-C(3'), H-C(5')

^a) Multiplicities determined by a DEPT experiment. ^b) Observed long-range HMBC (¹H,¹³C) interactions.

Compound **2** gave rise to a molecular-ion peak at m/z 378 in the EI mass spectrum, consistent with a molecular formula of $C_{20}H_{26}O_7$, as confirmed by 1H -, ^{13}C -, and DEPT-NMR. An IR resonance at 1754 cm $^{-1}$ verified an unsaturated γ -lactone moiety. The 1H - and ^{13}C -NMR spectra ($Table\ 2$) of **2** were similar to those of **1**. A total of 20 signals – five Me, two CH $_2$, five CH, eight quaternary C-atoms – were observed in the ^{13}C -NMR spectrum. In the 1H -NMR spectrum, the characteristic signals at $\delta_H\ 1.95\ (dq,3\ H)$, 1.84 ($s,3\ H$), and 6.12 ($s,3\ H$) showed the presence of an angeloyloxy group in s,3

¹⁾ For systematic names, see the Exper. Part.

Table 2. ${}^{1}H$ - and ${}^{13}C$ -NMR Spectral Data of Compounds 2-4. Spectra recorded in CDCl₃ at 400 (${}^{1}H$) and 100 MHz (${}^{13}C$); δ in ppm, J in Hz.

	2		3		4	
	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	$\delta_{ m C}$
H-C(1)	3.16 (d, J = 6.0)	60.4 (d)	3.13 (d, J = 5.6)	60.4 (d)	3.21 (d, J = 6.0)	60.5 (d)
$CH_2(2)$	2.25, 210 (2 m)	25.1 (t)	2.23, 2.16 (2 <i>m</i>)	25.0(t)	2.36, 1.77 (2m)	42.6 (t)
H-C(3)	5.16 (ddd, J = 3.6, 3.6, 7.2)	68.3 (<i>d</i>)	5.11 (ddd, J = 3.6, 3.6, 7.2)	67.7 (<i>d</i>)	5.27 (<i>ddd</i> , <i>J</i> = 3.6, 3.6, 7.2)	68.4 (d)
H-C(4)	2.29 (d, J = 5.2)	33.6 (d)	2.56 (d, J=6)	33.5(d)	1.74 (d, J = 7.2)	40.3(d)
C(5)	_	45.9(s)	_	45.9(s)	_	39.3 (s)
$H-C(6)^a$	5.07 (br. s)	70.9 (d)	4.90 (br. s)	71.3 (d)	2.30, 2.13 $(2d, J = 2.8 \text{ each})$	25.2 (t)
C(7)	_	158.1 (s)	_	156.0(s)	_	157.6 (s)
C(8)	_	101.4 (s)	_	103.7(s)	_	102.7(s)
CH ₂ (9)	2.14, 1.73	42.3 (t)	2.25, 1.75	42.0(t)	3.00, 2.38	34.9 (t)
2()	(2d, J = 13.6 each)		(2d, J = 13.6 each)	()	(2d, J = 13.6 each)	()
C(10)		61.0(s)		60.9(s)	_	61.6 (s)
C(11)	_	125.3 (s)	_	127.2(s)	_	124.7 (s)
C(12)	_	172.3(s)	_	171.3 (s)	_	172.0(s)
Me(13)	2.02 (br. s)	8.6(q)	2.08 (br. s)	8.7(q)	1.82 (br. s)	8.1 (q)
Me(14)	1.06(s)	14.2 (q)	1.06(s)	14.3(q)	1.25 (s)	20.3 (q)
Me(15)	1.01 (d, J = 6.0)	9.5(q)	1.01 (d, J = 7.6)	9.4(q)	1.04 (d, J = 8.8)	9.8(q)
C(1')	_	168.4 (s)	_	167.6(s)	_	167.7(s)
C(2')	_	127.4(s)	_	127.6(s)	_	127.6(s)
H-C(3)	6.12 (qq)	139.9 (d)	6.10 (qq)	139.1 (d)	6.13 (qq)	139.0(d)
Me(4')	1.84 (dq)	20.5(q)	1.86 (dq)	20.6(q)	1.88 (dq)	20.6(q)
Me(5')	1.95 (dq)	16.0 (q)	1.96 (dq)	15.9(q)	1.98 (dq)	15.9(q)
$MeCH_2O$	_	-	$3.24 - 3.48 \ (m)$	58.6 (t)	_	-
MeCH ₂ O	_	_	1.17 (t, J = 7.2)	15.3 (q)	_	_

a) CH₂(6) for compound 4.

position, as indicated by the H_{α} –C(3) resonance at 5.16 ppm (ddd, J = 3.6, 3.6, 7.2 Hz), an in accord with the corresponding HMBC spectrum ($Table\ 3$). Taking all these data into account, compound **2** was identified as $(1\beta,3\beta,6\beta,8\beta,10\beta)$ -3-(angeloyloxy)-1,10-epoxy-6,8-dihydroxyeremophil-7(11)-en-8,12 α -olide¹).

For compound **3**, a molecular-ion peak at m/z 406 (EI-MS) and a molecular formula of $C_{22}H_{30}O_7$ was determined by EI-MS, 1H -, ^{13}C -, and DEPT-NMR. Again, an IR band at 1754 cm⁻¹ verified an unsaturated γ -lactone group. The 1H - and ^{13}C -NMR spectra (*Table 2*) of **3** were similar to those of **2**. A total of 20 signals – six Me, three CH_2 , five CH, and eight quaternary C-atoms – were observed in the ^{13}C -NMR spectrum. The signals at δ_H 1.96 (dq, 3 H), 1.86 (s, 3 H), and 6.10 (qq, 1 H) showed the presence of an angeloyloxy group, and the signal for H–C(3) at δ_H 5.11 (ddd, J = 3.6, 3.6, 7.2 Hz) revealed that the angeloyloxy substituent was in 3 β -position, as corroborated by an HMBC experiment (Table 3), which, additionally, helped to position the EtO group at C(8). Taking all these data into account, compound **3** was identified as (1β , 3β , 6β , 8β , 10β)-3-(angeloyloxy)-1,10-epoxy-8-ethoxy-6-hydroxyeremophil-7(11)-en-8,12 α -olide¹).

Table 3. ¹H,¹³C Long-Range HMBC Correlations for Compounds 2-4. For C- and H-atom positions, see chemical formulae.

C-Atom position	H-Atom position				
	2	3	4		
1	2, 9, 14	2, 9, 14	2, 9, 14		
2	1, 4	1, 4	1		
3	1, 2, 4, 15	1, 2, 4, 15	1, 2, 4, 6, 15		
4	2, 6, 14, 15	2, 14, 15	2, 14, 15		
5	6, 9, 14, 15	6, 9, 14, 15	4, 6, 9, 14, 15		
6	14	14	1		
7	6, 9, 13	6, 9, 13	9, 13		
8	9	$9, 13, O-CH_2$	6, 9, 13		
9	1	1	14		
10	1, 2, 9, 14	1, 2, 9, 14	1, 2, 6, 9, 14		
11	6, 13	6, 13	9, 13		
12	13	13	13		
14	6	6	9		
15	2, 3, 4, 14	2, 3, 4, 14	3, 4, 14		
1'	3, 4', 5'	3,	4',		
2'	4', 5'	4', 5'	4', 5'		
3'	4', 5'	4', 5'	4', 5'		
4'	3′	3′	3′		
5'	3′	3′	3′		
CH ₃ CH ₂ O	_	CH_3CH_2O	_		
CH ₃ CH ₂ O	_	CH_3CH_2O	_		

Compound **4** gave rise to a molecular-ion peak at m/z 362 (EI-MS) and a molecular formula of $C_{20}H_{26}O_6$. Again, an IR band at 1754 cm⁻¹ verified an unsaturated γ -lactone. The ¹H- and ¹³C-NMR spectra (*Table 2*) were similar to those of compounds **2** and **3**, with a total of 20 signals (five Me, two CH₂, five CH, and eight quaternary C-atoms) in the ¹³C-NMR spectrum. In the ¹H-NMR spectrum, the signals at δ_H 1.98 (dq, 3 H), 1.88 (dq, 3 H), and 6.13 (dq, 1 H) indicated an angeloyloxy group in 3dp-position (assigned as above). Taking all these data into account, compound **4** was identified as (dq, dq, dq)-3-(angeloyloxy)-1,10-epoxy-8-hydroxyeremophil-7(11)-en-8,12dq-olide¹).

Experimental Part

General. Melting points (m.p.) were determined on an X-4 micro-melting-point apparatus; uncorrected. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. IR Spectra were recorded on a Bruker IFS-I20 HR spectrophotometer, in cm $^{-1}$. 1 H-, 13 C-, and 2D-NMR spectra (1 H, 1 H-COSY, HMQC, HMBC) were recorded on a Varian INOVA-400 apparatus in CDCl $_{3}$ with SiMe $_{4}$ as internal standard; chemical shifts δ in ppm, coupling constants J in Hz. EI Mass spectra were recorded on a VG-ZAB-HS mass spectrometer; in m/z (rel. %).

Plant Material. The aerial parts of *Ligularia sagitta* were collected in the Mengyuan County, Qinghai Province, China, in August 2002, and were identified by Prof. *Yourui Suo* of the Northwest Institute of Plateau Biology, Chinese Academy of Sciences.

Extraction and Isolation. The air-dried aerial parts of L. sagitta (5.8 kg) were powdered and extracted at r.t. with 95% aq. EtOH (4×7 d). The combined extracts were concentrated under reduced pressure to afford a residue (450 g), which was suspended in H_2O and successively extracted with petroleum ether (PE), CHCl₃, AcOEt, and BuOH. The CHCl₃ extract was subjected to column chromatographic (CC) separation (1.3 kg of

 SiO_2 , 200-300 mesh; PE/acetone 50:1, 40:1, 30:1, 20:1, 15:1, 10:1, 8:1, 6:1, 4:1, 2:1, and 1:1, then MeOH). Based on TLC analysis, a total of 20 crude fractions (F) were obtained. F8 (eluted with PE/acetone 20:1) was subjected to CC (100 g SiO_2 , 200-300 mesh; PE/acetone 30:1, 25:1, 20:1, 15:1), which led to the isolation of pure **1** (150 mg).

The original PE extract was subjected to CC (1.3 kg SiO₂, 200–300 mesh; PE/acetone 100:1, 80:1, 60:1, 50:1, 40:1, 30:1, 20:1, 15:1, 10:1, 8:1, 6:1, 4:1, and 2:1, then MeOH). Based on TLC analysis, a total of 15 crude fractions were obtained. F13 (2 g) was subjected to CC (100 g SiO₂, 200–300 mesh; PE/acetone 30:1, 25:1, 20:1,15:1,10:1, 8:1, 5:1, 2:1, and 1:1), which resulted in the isolation of compound **4** (35 mg). Additionally, F8 (4 g), which was purified by CC (100g SiO₂, 200–300 mesh; PE/acetone 80:1, 60:1, 50:1,40:1, 30:1, 20:1, 10:1, 5:1, and 1:1), afforded pure **2** (25 mg). Finally, compound **3** (20 mg) was obtained from F10 (3 g) by CC (100 g SiO₂, 200–300 mesh; PE/acetone 50:1, 40:1, 30:1, 20:1, 10:1, 5:1, 2:1, and 1:1).

 $(1\beta,3\beta,6\beta,8\beta,10\beta)-6-Acetoxy-3-(angeloyloxy)-1,10-epoxy-8-hydroxyeremophil-7(11)-en-8,12\alpha-olide\\ (= (1aR,3S,4R,4aS,5S,8aS,9aS)-5-Acetoxy-2,3,4,4a,5,7,8a,9-octahydro-8a-hydroxy-4,4a,6-trimethyl-7-oxo-1aH-oxireno[2',3':8,8a]naphtho[2,3-b]furan-3-yl (E)-2-Methylbut-2-enoate; 1). Yield: 150 mg. Colorless crystals. M.p. 190 – 191°. [<math>a$] $_{0}^{20}$ = -90.0 (c = 1.0, CH $_{2}$ Cl $_{2}$). IR (KBr): 3341 (OH), 1754 (γ -lactone), 1727, 1705, 1237, 1219. 1 H- and 13 C-NMR: see *Table 1*. EI-MS: 420 (8, M^{+}), 378 (2, $[M-C_{2}H_{2}O]^{+}$), 360 (23, $[M-C_{2}H_{2}O-H_{2}O]^{+}$), 278 (30), 260 (100).

 $(1\beta,3\beta,6\beta,8\beta,10\beta)$ -3-(Angeloyloxy)-1,10-epoxy-6,8-dihydroxyeremophil-7(11)-en-8,12α-olide (=(1aR,3S,4-R,4aS,5S,8aS,9aS)-2,3,4,4a,5,7,8a,9-Octahydro-5,8a-dihydroxy-4,4a,6-trimethyl-7-oxo-1aH-oxireno[2',3':8,8a]-naphtho[2,3-b]furan-3-yl (E)-2-Methylbut-2-enoate; **2**). Yield: 25 mg. Colorless gum. IR (KBr): 3481 (OH), 1756 (γ-lactone), 1714, 1700, 1235. 1 H- and 13 C-NMR: see *Tables 2* and 3. EI-MS: 378 (10, M^+), 360 (9, $[M-H_2O]^+$), 278 (52, $[M-C_5H_8O_2]^+$), 260 (100, $[M-C_5H_8O_2-H_2O]^+$).

 $(1\beta,3\beta,6\beta,8\beta,10\beta)-3-(Angeloyloxy)-1,10-epoxy-8-ethoxy-6-hydroxyeremophil-7(11)-en-8,12\alpha-olide\\ (= (1aR,3S,4R,4aS,5S,8aS,9aS)-8a-Ethoxy-2,3,4,4a,5,7,8a,9-octahydro-5-hydroxy-4,4a,6-trimethyl-7-oxo-1aH-oxireno[2',3':8,8a]naphtho[2,3-b]furan-3-yl (E)-2-Methylbut-2-enoate;$ **3** $). Yield: 20 mg. Crystalline needles. M.p. 166–168°. IR (KBr): 3454 (OH), 1742 (<math>\gamma$ -lactone), 1716, 1703, 1232. 1 H- and 13 C-NMR: see *Tables 2* and 3. EI-MS: 406 (18, M^+), 360 (59, $[M-C_2H_5OH]^+$), 306 (19, $[M-C_3H_8O_2]^+$), 277 (36, $[M-C_2H_5OH-C_5H_7O]^+$), 260 (100, $[M-C_2H_5OH-C_3H_8O_2]^+$).

 $(1\beta,3\beta,8\beta,10\beta)$ -3-(Angeloyloxy)-1,10-epoxy-8-hydroxyeremophil-7(11)-en-8,12 α -olide (= (1aR,3S,4R,4aS,5-S,8aS,9aS)-2,3,4,4 α ,5,7,8 α ,9-Octahydro-8 α -hydroxy-4,4 α ,6-trimethyl-7-oxo-1 α H-oxireno[2',3':8,8 α]naphtho[2,3-b]furan-3-yl (E)-2-Methylbut-2-enoate; **4**). Yield: 35 mg. Colorless gum. IR (KBr): 3361 (OH), 1771 (γ -lactone), 1714, 1701, 1233. 1 H- and 13 C-NMR: see *Tables 2* and 3. EI-MS: 362 (4, M+), 279 (55, $[M-C_5H_7O]$ +), 262 (51, $[M-C_5H_8O_2]$ +), 245 (100, $[M-C_5H_8O_2-OH]$ +).

The authors thank Prof. Yourui Suo, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), for collecting and identifying the plant material.

REFERENCES

- [1] Y. Zhao, S. Parsons, B. A. Smart, Tetrahedron 1997, 53, 6195.
- [2] X. O. Li, K. Gao, Z. J. Jia, Planta. Med. 2003, 69, 356.
- [3] Y. Asada, T. Furuya, Chem. Pharm. Bull. 1981, 32, 175.
- [4] T. Sato, Y. Moriyama, H. Nagano, Y. Tanashashi, T. Takahashi, Bull. Chem. Soc. Jpn. 1975, 48, 112.
- [5] H. Wang, X. Tian, Y. J. Pan, Helv. Chim. Acta 2003, 86, 3320.
- [6] Y. Wang, S. P. Yang, J. M. Yue, S. Chow, W. Kitching, Helv. Chim. Acta 2003, 86, 2424.
- [7] O. Kretsi, N. Aligiannis, A. L. Skaltsounis, I. B. Chinou, Helv. Chim. Acta 2003, 86, 3136.
- [8] M. Tada, Y. Moriyama, Y. Tanashashi, T. Takahashi, Tetrahedron Lett. 1971, 43, 4007.
- [9] F. Bohlmann, C. Zdero, M. Grenz, Chem. Ber. 1974, 107, 3928.

Received December 14, 2003